A rare case of enamel pearl in canine tooth

Ana Carolina Ramos Mariz 1*
Gabriela Meyge de Brito 2
Daniela Adorno Farias 3
André Wilson Machado 2
Paulo Sérgio Flores Campos 1

Abstract:
The enamel pearl (EP) is a dental developmental anomaly that usually manifests in furcation areas, and is uncommon in uniradicular teeth. We present a case of EP on the vestibular surface of tooth 13 in a 38-year-old patient, who was submitted to multislice computed tomography (MSCT) for orthognathic surgery planning. The attenuation coefficient (3.070 HU) allowed the condition to be classified as a true EP.

Keywords: Tooth Abnormalities; Multidetector Computed Tomography; Tooth, Impacted

1 Federal University of Bahia, Dentistry and Health section, Department of Oral Radiology - Salvador - Bahia - Brasil.
2 Federal University of Bahia, Dentistry and Health section, Department of Orthodontics - Salvador - Bahia - Brasil.
3 University of Chile, Faculty of Dentistry, Department of Oral Pathology - Santiago - Santiago - Chile.

Correspondence to:
Ana Carolina Ramos Mariz.
E-mail: anacrmariz@gmail.com

Article received on July 12, 2018.
Article accepted on July 18, 2018.

DOI: 10.5935/2525-5711.20180007
INTRODUCTION

Enamel pearls (EPs) are ectopic deposits of enamel that normally manifest in the furcation region and close to the cemento-enamel junction \cite{1,2}, and show a prevalence ranging between 0.82\% and 5.1\% \cite{3-5}. They mainly affect the permanent maxillary molars \cite{4,6,7}, especially the second and third molars \cite{12,9} and vary from 0.3 to 4 mm in diameter \cite{13,9}. Microscopically, EPs present prismatic enamel and can be classified as true pearls (consisting of enamel only), enamel-dentin pearls (made up of enamel and tubular dentin) and enamel-dentin-pulp pearls \cite{1,3,5-7}.

The etiopathogenesis of EPs is unknown, but the most widely accepted theory is that these pearls result from a localized developmental activity of the remnant of Hertwig’s epithelial root sheath \cite{1-4,6,8-10}. Ameloblasts are believed to differentiate into functioning cells that produce enamel deposits on tooth roots \cite{1-3,5,8-10}. The possibility of the condition being of a hereditary nature has been admitted \cite{7,10,11}.

The aim of this report was to relate a rare case of EP in a permanent canine tooth evaluated by computed tomography.

CASE REPORT

The patient, a 38-year-old woman was submitted to multislice computed tomography (MSCT) for the purpose of planning orthognathic surgery, which revealed a compound odontoma beneath tooth 83, tooth 43 impacted and localized below the molars, and an EP in the vestibular cervical region of tooth 13 (Figure 1).

The attenuation coefficient of the EP (3.070 HU) was shown to be equivalent to that of the enamel of tooth 18 (3.073 HU) (Figure 2), which led us to the diagnosis of a true EP.

DISCUSSION

The occurrence of EPs in uniradicular teeth is uncommon \cite{10,12}, because prevalence studies have not reported cases of EP in uniradicular teeth \cite{1,3}. To the best of our knowledge, only two cases of EP in uniradicular teeth have been reported: one in a mandibular central incisor \cite{12} and the other in a mandibular first premolar \cite{10}. Among the 45,785 teeth in a human tooth bank, the following data were observed: 287 molars (0.627\%) with one EP, 57 molars (0.125\%) with EPs, and 1 molar (0.002\%) with 3 EPs; 26 premolars (0.057\%) with one EP and 4 canines (0.009\%) with one EP \cite{4}.

The ectopic enamel of both pearls and cervical enamel projections has frequently been associated with periodontal destruction in molars \cite{6,7,9,12,13}. In these cases, attachment of the periodontal ligament does not occur appropriately, which makes it difficult to control biofilm and restricts access for root scaling and planing \cite{12}, thus contributing to the formation of periodontal pockets \cite{6,8,10,12}. Patients who present EP need follow-up and prevention programs for preventing the appearance of periodontal disease \cite{2,6}. Some authors have suggested that EPs must be removed to allow appropriate biofilm control and prevent future (clinical) attachment loss \cite{6,10}.

Radiographically, EPs are seen as dense, circumscribed radiopacities in the crown or root of the affected tooth \cite{3,6}. The density, architecture and localization of the EP may be better defined by the high resolution of cone beam computed tomography (CBCT) \cite{9}. This exam modality also helps to evaluate the distance between the EP and alveolar bone crest or furcation area, which provides a more precise prognosis of the future risk of periodontal bone loss \cite{12}. The MSCT used in the present case showed only enamel in the constitution of the pearl, allowing us to classify it as a true pearl.

Figure 1. 3D reconstruction showing tooth 43 in an ectopic position, compound odontoma beneath tooth 83, and PE on buccal aspect of tooth 13 (on detail).
REFERENCES

