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Abstract:
The HIV infection is a worldwide spread disease which with the HAART (highly active antiretroviral therapy) 
application has became a chronicle disease. The HAART promotes the reduction of the HIV viral load and partial 
and temporary reconstitution of the immunological defence system of the HIV-infected subject, although for 
that its toxicity and patient adherence to the treatment might be well monitored. With the HAART, the past high 
prevalence of oral and oropharyngeal lesions decreased significantly, although in a non-homogeneous pattern. The 
fungus Candida albicans is a commensal microorganism of the human gut tract which provokes an opportunistic 
infection, when there is an imbalance between its virulence and the defence conditions of the host. The pathoge-
nicity of the Candida albicans influences the degree of opportunistic infection; however, the fungical colonization 
is mainly dependent of the current immunological status of the patient. The host defence against Candida albicans 
is also provided by non-immunological barriers, physical as the keratinocytes of the oral epithelium, serological 
as the neutrophils, polymorphonuclear leukocytes and macrophages or humoral as the saliva, although the role 
of the salivary immunoglobulins is still unclear. Independently of the immunosuppression, the sensitive control 
to balance immunological innate and immunological acquired actions is complex and it prevents against an 
indiscriminate immunological acquired response. Dendritic cells and lymphocytes are the main defensive im-
munological cells of the oral mucosa. The dendritic cells phagocytise and deplete microorganisms, presenting 
the products of such depletion as antigens to the T lymphocytes, which provide acquired immunological defence 
for excellence. Specific Th1 type provides cell-mediated immunological protection against Candida albicans and 
other pathogens. Moreover, Th2 type cells provide immunological tolerance against external and auto-antigens. 
Treg and Th17 cells are actors of vital importance in the switching between Th1 type and Th2 type responses, 
although the complete understanding of their roles in this balance is still an ongoing process.
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INTRODUCTION

The HIV infection is a devastating epidemic, with serious 
socio-economical and population reduction consequences. The 
main strain of the virus which causes acquired immunodeficiency 
syndrome is the HIV1, in this present paper called HIV. Few 
HIV+ patients do not present oral lesions during some phase of 
the disease progress, presenting pathological signals and symp-
toms mainly in oral mucosa and salivary glands131.

It is known that the mucosa of HIV+ patients are vul-
nerable to the incidence of opportunistic fungical infections, 
as candidiasis, cryptococcosis, invasive aspergillosis, dissemi-
nated histoplasmosis and disseminated coccidioidomycosis146,285. 
However, the compromising of oral defence in HIV+ patients 
occurs even before the incidence of opportunistic infections. 
It has been mentioned, as examples, the occurrence of salivary 
glands dysfunctions201 and the presence of yeasts and hyphae of 
Candida albicans in oral mucosa345,316 before significant decrease 
in the number of CD4+ cells in the blood stream and in the IgA 
concentration of the saliva of infected patients316.

Therefore, the current research in the oral aspects of 
HIV+ patients highlights a broader approach, involving not only 
the classical deficiency of CD4+ cells but especially the innate 
and acquired attributes of the immunological system of such 
subjects. Researchers investigate in special the defensive role 
of cells Th1 and Th2 and the regulatory role of cells Treg and 
Th17, contextualized in the complex control of the interactions 
between microorganisms and host.

In such contextualized approach, it is mandatory to 
consider the proofed partial and temporary reconstitution of 
the immunological system of HIV+ patients under HAART 
(highly active antiretroviral therapy), with important reduction 
of the prevalence of opportunist infection by Candida albicans 
in oral mucosa.

HAART: HIGHLY ACTIVE ANTIRETROVIRAL 
THERAPY

With HAART application, the immunological system of 
the HIV patient is partially and temporarily reconstituted27, due 
to the decrease of the viral load and the enhanced response of 
the defensive cells, in adults19,83,9,332 and children335. More than 
the increase in number of the defensive cells, with increase of 
the hematopoietic activity332, there is a functional recovery of 
immunodepressed cells232,332.

Under HAART, the enhanced reactivity of cells 
CD4+19,20,83,232,89,90, and other effects imply in significant de-
crease of the morbidity and mortality of HIV+ patients231,74. The 
positive effects of HAART may be also of non-immunological 
nature50, as a worst fungical adherence to epithelial cells28.

Moreover, it has been suggested that HAART could act 
directly as anti-fungical drug, especially over the virulence factor 
Sap (secretory aspartyl proteinase) of Candida albicans48,49,216. Mi-
crobiologically, certain fungical strains may respond differently 
to HAART. It was verified an increase of Candida spp. (no-albicans) 
in the oral microbiota, as examples, C. tropicalis e C. parapsilosis; 
however, there were rare assessments of C. dubliniensis, C. norve-
gensis, C. humicola and C. rugosa207.

Classically, HAART includes at least two inhibitor drugs 
of reverse transcriptase of nucleoside (RTI) plus a protease inhib-
itor (PI) or a reverse transcriptase inhibitor of no-nucleoside226. 
In regard to the risk-benefit of its composition, toxicity is the 
main cause to avoid certain regimens; therefore the clinical 
protocols must always evaluate the side effects simultaneous to 
the viral load reduction88.

In theory, reduction of the antiretroviral drugs included 
in the medication could be worth, since it implies in lower 
toxicity and better adherence of the patient to the treatment. 
However, simplified regimens carry a significant higher risk of 
resistance and consequent loss of the power of viral suppres-
sion271. In HIV+ patients the resistance to HAART may be due 
to the high rate of viral mutations, since the applied drugs have 
selective effects226,241.

In opposite, very “efficient” medications, there is a high 
risk of substantial side effects, what may provoke important lack 
of commitment of the patient with the treatment; what also 
significantly diminish its efficacy320,325. As consensual rule, the 
therapeutic prescriptions, if working well, must be preserved, 
unless a change is clinically necessary271.

The IRIS (Immunologic Reconstitution Inflammatory 
Syndrome) occurs days or weeks after the beginning of the 
antiretroviral therapy, as an organic response to the drugs which 
compose HAART27. The hypertrophy of the parotid gland is 
suggested as a possible oral manifestation of IRIS in patients 
under HAART229.

With HAART, the HIV infection has became a chronicle 
disease and it presents a different scenario. One of the features of 
this new scenario is the expressive reduction of the incidence and 
prevalence of opportunistic oral lesions19,83,9,199,286,20,15,172,278,86,317.

Epidemiologically, studies confirm such reduction as 
definitive trend in the USA160,142, in Mexico252, in general indus-
trialized countries142, and in Brazil109,137,243. However, in England 
there is no evidence that it has happen a significant difference 
in the reduction of the incidence of oral candidiasis with the 
HAART introduction, substituting no-HART (antiretroviral 
therapy not highly active), according to Ives et al152.

It is important to highlight that cohorts which follow 
patients submitted to HAART for a long period of time, the im-
munological reconstitution might be much more expressive334, 
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although such recovery is slow and incomplete in immuno-
logical very compromised patients209,310. In these patients, the 
re-incidence of oral lesions, especially candidiasis, may be an 
indicator of HAART failure142,253,211.

Besides that, the reduction of the incidence of oral 
manifestations in HIV+ patients was not homogeneous for all 
lesions235, being hard to distinguish the oral manifestations of 
the HIV infection from the side effects of HAART142. As an 
example, HAART significantly increased the presence of oral 
warts129,142,109.

Other factors must also be considered in this new sce-
nario. Co-infections may in smaller decrease of incidence of oral 
lesions122 and socio-demographic factors may also influence, 
since there is a trend for the decrease to be smaller in HIV+ 
patients under HAART Who present a lower scholar level75.

FUNGUS CANDIDA ALBICANS

Candida albicans is an imperfect diploid dimorphic fungus, 
with phenotypic flexibility, which resides in a commensal way 
in the human gut in 40% of healthy subjects, usually without 
potential to overwhelm the host immunological defence14. The 
possibility of Candida albicans colonize, penetrate and damage 
the host tissues depend basically of the unbalance between the 
fungical virulence and the defence conditions of the host, im-
munological148,111,112,84 or no-immunological, as the pH of the 
anatomic site colonized by Candida albicans76 and the possibility of 
formation of a shelter niche, a biofilm for homing and resistance 
of the microorganisms59. In this case, the fungus Candida albicans 
does not present the commensal status anymore and provokes 
an opportunistic infection called candidiasis.

Candidiasis can be a light opportunist infection or up to a 
live-threading disease in seriously immunodepressed patients. To 
achieve such level of severity, the fungical infection, of species C. 
albicans and no-albicans, occurs through the mucosa and gain the 
blood stream leading to a generalized systemic candidiasis82. That 
is a potentially lethal complication in AIDS patients in advanced 
stage of the disease171,315,240.

The pathogenicity of the fungus Candida albicans is com-
plex and multifactorial. The secretion of hydrolytic enzymes 
aspartyl proteinases (Saps) promotes a virulence potential well 
descried in the pertinent literature70,149,78. The enzymes Saps are 
codified by at least tem genes Sap (Sap1 a Sap10), identified by 
mDNA sequences148,264, which roles in the colonization and inva-
sion of the host tissues are distinct148,213. The phenotype of the 
opportunistic fungus Candida albicans influences the cytokines 
production and the response of the host to the infection328. First, 
a fungical aggression stimulates an innate response, constituted 
by phagocytosis, generation of pro-inflammatory mediators, 

traffic of inflammatory cells to the injury site and the beginning 
of an acquired immunological response145.

The pattern of adherence and fungical colonization of 
the epithelial cells of the oral mucosa reflects its pathogenicity, 
mainly because of the expression of Saps by different strains and 
biotypes of Candida39. In HIV+ patients, the higher adherence 
of Candida albicans to the oral mucosa, independently of lower 
levels of antibodies against Candida in saliva and of potential 
lower salivary secretion, is simultaneous with the Sap produc-
tion305. Such results suggest that there is a selective colonization 
of Candida albicans strains which present better adherence to the 
oral mucosa228,76,343. Other enzyme secreted by Candida albicans 
which plays a pathogenic role is the B phospholipase151,123, that 
can kill or damage the host cells123.

Ultra-structural studies showed that the tissue response 
in oral mucosa of HIV+ patients is different in the pseu-
domembranous candidiasis when compared to the erythema-
tous candidiasis. In the pseudomembranous form, the cellular 
immunological compromising, especially of dendritic cells 
and lymphocytes, is proportionally more severe than in the 
erythematous form268. In the pseudomembranous form, the 
fungical hyphae are abundant and extend up to the spinous layer 
(stratum spinosum) of the oral epithelium, with simultaneous par-
akeratosis, acanthosis and spongiosis of the infected epithelium. 
The hyphae penetrate in inter-cellular spaces, suggesting that 
Candida albicans may present thigmotropism (guide by contact), 
observed in vegetal fungi and recognized in fungical proliferation 
in vitro287. The inter-cellular fungical penetration is facilitated 
by the detachment of epithelial desmosomes, probably caused 
by Saps and/or phospholipases produced by Candida259, also 
observed in HIV- patients212. It is interesting to observe that in 
the HIV+ patient the immunological cellular reaction against 
fungical hyphae seems to be minimal; although, possibly, because 
of the ongoing immunodepression259. In the erythematous form, 
hyphae are rare259,104,258.

There is important variation of strains of Candida albi-
cans and other species, which colonize the oral cavity of HIV+ 
patients87. The great majority of HIV+ patients who present 
oral candidiasis are mainly infected by the endogenous Candida 
albicans, already present as a commensal microorganism f the oral 
flora of the patient. However, part of the patients presents new 
Candida albicans strains275,189,23 or other Candida no-albicans spe-
cies170,326, as Candida dubliniensis64,303,206,280 and Candida glabrata114. 
Different strains and species may be transmitted between sub-
jects275, what may contribute for episodes of fungical resistance 
to therapeutic drugs.

Overall, there is significant genetic diversity72 and the 
degree of fungical colonization increases proportionally to 
the disease advancement246,326, depending directly upon of the 
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individual response in each anatomical infected site289,113,115,111,112. 
Therefore, occurrence of oropharyngeal candidiasis and vaginal 
candidiasis are not associated72.

The individual resistance to drugs as fluconazole may 
occur because of the use in different episodes of candidiasis or 
prolonged use193,110, and contributes for the diversity of strains 
and species presented by the patients275,255,23,170. Moreover, 
interactions between the HIV virus and Candida albicans may 
change the virulence potential of the fungus136.

ORAL INFECTION BY CANDIDA ALBICANS 
IN HIV+ PATIENT

The earliest and significant incidence of oral and 
oropharyngeal lesions in HIV+ patients was presented in 
the 1980’s126,1,132,164 as a predictive signal of the HIV infec-
tion132,164,308,272,162,222,237,46,67.

In 90% of the HIV infected individuals, in some stage of 
the disease, it occur one or more episodes of Candida albicans 
infection112, which can affect either the oropharyngeal region 
as the oesophagus91,120. In 75% of the cases of oropharyngeal 
candidiasis, it also occur esophagical candidiasis or significant 
risk of its occurrence3.

Esophagical candidiasis is only confirmed by endoscopic 
biopsy256, and part of the patients positive for that (30 to 43%) do 
not present symptoms, as pain and burning sensation116. If they 
do, they must receive the prescribed anti-fungical therapy even 
without diagnosis confirmation by endoscopic exam250,12. With 
HAART, episodes of opportunistic oropharyngeal infections, 
sometimes called “AIDS predictors”, decrease significantly44.

The resistance of the oral mucosa to candidiasis in a health 
subject is the sum of the redundant mechanisms which include 
salivary anti-candidiasis proteins, inhibition of the growth of 
Candida albicans by oral keratinocytes and the acquired immu-
nological response provided by T lymphocytes84. The protection 
of the salivary proteins and the action of the oral keratinocytes 
against Candida albicans was evidenced in vitro. Experimental mo-
dels of oropharyngeal candidiasis have detected that the mecha-
nisms and the role of mediators in the acquired immunological 
response against Candida albicans, with presentation of antigens 
by the dendritic cells to CD4+ T lymphocytes84. However, the 
presentation of antigens by keratinocytes is uncertain, since these 
cells are located in the superficial layer of the epithelium and 
the CD4+ cells are located in the basal layer292, although such 
presentation may be stimulated by Candida infection16.

As a model to study the evolution of the incidence of can-
didiasis, it has been suggested that the debility and immaturity of 
the dendritic cells may interfere in the presentation of Candida 
albicans antigens to the CD4+ cells, which are debilitated by the 
HIV infection. HIV virus may also prejudice the phagocytary 

activity in the oral mucosa against Candida albicans, leading to 
clinical infection. However, such debilities may be partially 
compensated by the defence mechanisms still preserved (phy-
sical barrier of the keratinocytes, citotoxic activity of the CD8+ 
lymphocytes and partial phagocytary activity). Such remaining 
mechanisms may limited the candidiasis proliferation in the oral 
mucosa and prevent its systemic dissemination84.

Moreover, dendritic cells, T lymphocytes and macropha-
ges of the oral mucosa may be the entrance door for the HIV 
viral infection58, although the transmission of the HIV virus by 
oral mucosa is unexpected150.

In general, oral lesions in HIV+ patients have been ex-
tensively categorized2,130,337,67 and directly correlated with the 
decrease of the CD4+ lymphocytes number108,270,200,124,163,166,181 
and with the HIV viral load197,133. Different opportunist infec-
tions are associated with the viral load, but not with the number 
of CD4+ cells43, although the number of CD4+ cells is indicative 
of the stage of evolution of the HIV infection and the baseline 
for therapeutic decisions294.

Among the detected oral lesions, candidiasis is the one 
with greater prevalence and incidence, although the epidemio-
logical data is very heterogeneous. There are some reasons for 
such heterogeneity: a) differences among the assessed samples 
and the stage of the HIV infection in the included research 
subjects; b) concomitant prevalence of other oral lesions, whi-
ch may difficult the differential diagnosis of candidiasis124; c) 
significant influence of covariants as smoking habit233,266, use of 
alcohol236, use of heroin/methadone133 and oral hygiene and; 
d) prevalence of co-infections potentially facilitators of the 
fungical colonization, as the Herpes simplex virus (HSV) and the 
Epstein-Barr-EBV virus288.

Oral candidiasis may be presented in the pseudomem-
branous form, erythematous form, angular cheilitis128 and 
hyperplasic258. The pseudomembranous and erythematous forms 
are the most common260. The pseudomembranous form is cha-
racterized by the presence of white papular multifocal lesions. 
The diagnosis is mainly clinical but the diagnosis confirmation 
is made by microbiological culture of clinical collection, what 
leaves a reddish surface. Fungical hyphae are pathognomonic. It 
practically does not present associated inflammation and rarely 
presents micro-abscess, even though the colonization area is 
broad104,258.

The erythematous form provokes multiple micro-
-abscesses in the epithelium260,104 and diffused erythemae in the 
palate, oropharynge and tongue dorsum. In general, fungical 
hyphae are absent. The erythematous form demands biopsy for 
diagnosis confirmation. In the hyperplasic form, a superficial 
cellular reaction occurs against the pathogen, depending upon 
the degree of its virulence258.
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Signs of oropharyngeal fungical infection vary from light 
to generalized thrush326. The esophagical candidiasis can also be 
light or generalized, depending upon the stage of AIDS, or can 
be associated with an acute HIV infection55,239. The patient may 
present hyperplasic palatal papillae260 or exfoliated cheilitis, 
mainly in the lower lip261.

In regard to the symptoms, the patient with oropharyn-
geal candidiasis presents burning feeling, pain, taste change and 
difficult to swallow liquid and solid food128. Esophagical candi-
diasis may lead to dysphagia, odynophagia, fever and nausea/
vomiting308,60. Because of painful swallowing, the limited intake 
of food and liquid may provoke expressive weight loss, which is 
very common in HIV+ patients308.

SALIVA

The salivary flow and its aggregating properties provide a 
dynamic balance between Candida albicans and other commensal 
microorganisms of the oral microbiota, protecting against the 
establishment of oral candidiasis in a healthy subject26,196,140. 
However, such salivary mucine properties may also facilitate the 
Candida albicans adherence to the oral mucosa101,143.

Some salivary proteins present fungicidal effects. Lyso-
zyme and lactoferrin are two proteins of the innate defence, 
no-immunological and no-specific against Candida albicans; 
however, with potential fungicidal properties141,290,223,344,274,139.

Histatins are other salivary proteins which may con-
tribute to the non-immunological innate defence of the oral 
mucosa254,100,314,139, as the antileukoprotease312.

In HIV+ patients, the salivary antifungicidal effect is 
controversial. It is lower for a group of researchers183; however, 
for others, the salivary lysozyme concentration is greater345,18,195 
and the lactoferrin production is not definitively associated to 
the limited proliferation of Candida albicans84.

Candidiasis and salivary flow may also be associated. 
Subjects with Sjögren syndrome present reduced salivary flow 
and higher incidence of candidiasis.263 The same occurs with 
HIV+ patients in advanced stage, in which the salivary flow is 
reduced in 40%183 and in patients with oral acid pH, in which 
the virulence of Candida albicans is enhanced273,176,77.

The detection of specific IgA antibodies against Candida 
suggests that there is a specific humoral response against Candida 
albicans that inhibits the adherence and colonization of such 
fungus in the oral epithelium; however, such hypothesis was con-
firmed in vitro only103,330 and the fact that subjects with deficient 
salivary IgA production do not present significant increase in 
the incidence of candidiasis7 makes such hypothesis vulnerable.

HIV infection produces direct and indirect effects in 
the humoral and cellular immunity of the oral mucosa, innate 
or acquired57, with consequent increase in the incidence of 

opportunist infections; however, conclusions in regard to the 
humoral immunity of HIV+ patients, especially about salivary 
flow and salivary IgA concentration, are controversial56,111.

For some authors, there is no significant alteration in 
the salivary flow, although there is a tendency for flow reduc-
tion195. For others, the reduction is certain and consequently 
its antimicrobial effect too183. According to some authors, it 
occur significant reduction in the IgA production and conse-
quent reduction in the antimicrobial effect215,306. However, for 
others, there is no change29 or the IgA anti-Candida production 
increases18,66, simultaneously with the increase of the production 
of anti-microorganism proteins as lactoferrin, lysozyme and 
histadine; independently of the decrease in the salivary flow68,99.

The change in the profile of the immunological response 
from Th1 to Th2 might be critical in the immunological unbal-
ance in HIV+ patients62. Healthy subjects present in the saliva 
cytokines of Th1 and Th2 immunological responses. However, 
in HIV+ patients, the profile of salivary cytokines is clearly of 
Th2 response but not Th1 response175.

IMMUNOLOGICAL DEFENCE

Immunologically, the host defence can be divided in in-
nate and acquired. The innate defence is congenital and DNA 
oriented and the acquired defence is basically organized by T 
and B lymphocytes with structurally unique receptors. The 
lymphocyte receptors are random generated, and provide an 
extremely diverse repertoire of defence. Then, there is a great 
probability that a lymphocyte recognizes an antigen and, conse-
quently, to be activated and proliferate in cloned expansion. Such 
process is absolutely necessary for an efficient immunological 
response204. The effector mechanisms of the innate immunity, 
including macrophages, phagocytes and complement system, are 
immediately activated when an antigen is presented to the host, 
while the cloned expansion delays in average from 3 to 5 days205.

The activation of the acquired immunological system 
can be triggered not only by infectious microbial antigens, but 
also by environmental innocuous antigens and self-antigens, 
generating allergic and auto-immune diseases205. So, how the 
immunological system can identify the origin of the antigen? 
And when the immunological response must be activated? The 
connections among some components of the immunological 
system are not well understood yet, however, recent progresses 
allow a contextualized view of the defence system204 and its 
failure substantially collaborates for the susceptibility of the oral 
mucosa to candidiasis in HIV+ patients125.

The innate immunity is fundamental in the host defence 
against pathogenic antigens. It is mediated by many geneti-
cally pre-determined receptors, which specificity is molded by 
natural selection. The issue is that the genome can codify only 
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a limited number of gens, for example, the human genome 
contains only 75,000 to 100,000 gens, which, in the most cases, 
are not related to the immunological recognition205. In oppo-
site, the acquired defence system presents approximately 1014 
receptors for immunoglobulins and 1018 limphocytary receptors, 
developed in a clonal basis. With such defence armamentarium, 
even though the microorganisms being extremely heteroge-
neous and suffering periodic mutations, the acquired defence 
can potentially recognize ever possible antigen. However, the 
trade off of such diversity is the lack of ability to distinguish 
pathogenic external antigens from innocuous external antigens 
and from self-antigens.

The strategy of innate defence is not clonal as the ac-
quired one and it does not recognize ever antigen per se, however, 
be triggered by few molecular standard structures present in 
large groups of pathogenic microorganisms, as example, bac-
terial lipopolysaccharides, peptidoglycans, lypoteichoic acids, 
mannans, bacterial DNA, double-stranded RNA and glucans154. 
For example, lipopolysaccharide is synthesized only by bac-
teria, and the receptors for such molecules alert the host to 
the presence of an infection by bacteria. Such “sensitive” and 
sophisticated balance can prevent the invasion of pathogens and, 
at the same time, preserve the symbiotic interaction with the 
commensal flora21,276,97.

However, other important effect of the innate immuno-
logic defence is the professional antigen-presentation, especially 
by dendritic cells, macrophages and B lymphocytes. In general, 
when a molecular pattern in a pathogenic microbe is recognized, 
antigen-presenting cells (APCs) process it and present part of 
that, as example, MHC (major histocompatibility complex) 
class II segments.

In order to trigger the acquired immunological system, 
beside MHC class II presentation, co-stimulatory signals as 
CD80 and CD86 molecules are necessary. The induction of 
expression of such molecules is also controlled by the innate 
immunological system, throughout the activation of toll-like 
receptors (TLR) in an infectious scenario. The recognition of an 
antigen by a T cell in the absence of CD80 or CD86 molecules 
promotes its permanent inactivation. Then, the combined 
activation of different receptors, TLR or non-TLR, results in 
complementary effects, synergic or antagonic, which modulate 
the innate and acquired immunity313,97 and protect against an 
indiscriminate acquired immunological stimulation63.

Systems of receptors may modulate the antigenic speci-
ficity of the response, as T helper 1 (Th1) or T helper 2 (Th2), 
throughout the feedback of the effect cells to the dendritic cells 
and not throughout the instructions provided by the pathogens, 
therefore, an experience-based criteria, inducing and maintain-
ing an appropriated polarized response159.

ORAL MUCOSA INVASION

Histologically, the oral mucosa presents in 60% of its sur-
face similar characteristics to the esophagic and vaginal mucosa. 
The stratified squamous epithelium and the lamina propria of 
the connective tissue, mainly formed by dense collagen fibers, 
are separated by a basal membrane. One difference between the 
oral epithelium and the esophagus/vagina epithelium is the oral 
keratinized epithelium, which is similar to the skin epithelium, is 
found in the gingiva and hard palate and represents 25% of the 
oral mucosa. Other difference is the dorsal tongue epithelium, 
which presents a large number of sensorial gustative papillae, 
representing 15% of the oral mucosa surface.

Keratinocytes are cells of the oral epithelium adjacent 
to the basal membrane, which united by desmosomes (in larger 
number and better attached in the external region of the epi-
thelium) provide the main physical barrier against pathogenic 
agents invasion. The oral epithelium turnover (approximately 
14-20 days) occurs due to the lost of the protein integrin of the 
keratinocytes. Such process is fundamental for the homeostasis 
of the oral mucosa, limiting for example, the colonization and 
infection by Candida albicans fungus274.

Epithelial cells invade the lamina propria, allowing that 
dendritic cells present antigens to lymphoid tissue nodes, which 
contain lymphocytes as host defence agents. Keratinocytes are 
HIV infectable cells249, with potential risk that their action to 
be diminished, although such hypothesis has not been clinically 
proofed291. The calprotection production in keratinocytes, 
preserved in HIV+ patients, is a physical barrier against the 
penetration of Candida albicans hyphae104.

In the skin, infected keratinocytes by Candida albicans pro-
duce specific cytokines which collaborate to the immunological 
response regulation11,295,277, as in the oral mucosa179,117,292,95,96,214,94, 
thru the activation of innate recognition mechanisms by toll-like 
receptors (TLR). Furthermore, epithelial cells might secrete 
antimicrobial peptides as beta-defensins, which prevent the ins-
tallation of the infectious process in the oral mucosa335.

Neutrophils offer innate protection, mainly phagocyti-
zing and digesting bacteria and fungi, and also producing cytoki-
nes which attract and stimulate other immunological actions, 
instructing and modulating dendritic cells282,321.

The local response against Candida albicans is mediated 
by macrophages and polymorphonuclear leukocytes, which are 
more potent that the dendritic cells to kill Candida albicans220 and 
play an important role in the innate immunological response205. 
Further, they stimulate the lymphocytary proliferation and the 
synthesis of related cytokines17,336,125.

Macrophages are physiologically located in the lamina 
propria and produce peroxynitrite, an anti-Candida product327. 
They present a repertoire of receptors which promote the ho-
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meostasis, defence and immunological induction309,198. When 
they are activated by cytokines as interferon-gamma, they 
differentiate and participate of the acquired immunological 
response against Candida327.

Polymorphonuclear leukocytes are present in the blood 
stream, providing protection against systemic infections338,112, 
and are also in the lamina propria and in the epithelium by 
inflammatory induction205.

In HIV+ persons, the phagocytary function of the macro-
phages is not affected225,125. Macrophages may also produce nitric 
acid, an anti-Candida product. Such production may be regulated 
by T gamma-delta cells155, and is not compromised in HIV+ 
patient125. However, cytokines as IL4 e IL10 may compromise 
the antifungical action of the polymorphonuclear leukocytes, in-
creasing the susceptibility of the host to opportunist infections307.

Dendritic cells and lymphocytes are the main acquired 
immunologic cells anti-Candida of the oral epithelium221. Den-
dritic cells phagocytose Candida, presenting the products as 
antigens to the T lymphocytes, which are the immune cells by 
excellence. The proliferation of specific lymphocytes against 
Candida is stimulated by cytokines produced by dendritic cells221.

Dendritic Cells
Dendritic cell had its identity and function clarified in 

the 1970’s297,298,300,296,299. Langerhans cells are a sub-population of 
the dendritic cells22,251, a type which presents certain features, as 
example, CD1a+ identification, Birbeck granules, Lag antigens 
and E-cadherin53,52.

Dendritic cells are located in the basal and supra basal layers 
of the epithelium of the oral mucosa40,73,5,257,69,323,185,24,283,284,71,158, 
architecturing the MALT (mucosal associated lymphoid tissue) 
as primary lymphatic tissue. In oral mucosa, the dendritic cells 
and other antigen-presenting cells must quickly respond against 
intrusion pathogens220. Similarly, in the gut the dendritic cells 
architecture the GALT (gut associated lymphoid tissue)186; ho-
wever, there they are considered secondary lymphatic tissue40. 
Anyway, in both anatomic sites they are fundamental for the 
acquired immunological protection248. Furthermore, in the oral 
mucosa they might be more efficient in the antigen-presentation 
process to T lymphocytes than the skin dendritic cells138.

Dendritic cells are specialized in the antigen capture, 
migration and presentation to T lymphocytes346,54,340,22,158, per-
forming a crucial defence against pathogens322,324. Furthermore, 
the dendritic cells might collaborate to the immunological 
tolerance of the subject against self-antigens, minimizing auto-
-immune response22. In a broader view, dendritic cells also 
perform diverse roles in the mobilization of the immunological 
response, innate or acquired, working simultaneously in the 
homeostasis and host protection153.

The functional properties of the dendritic cells are 
related to their state of maturation238. Different lineages and 
phenotypes of dendritic cells have being identified and there are 
signals that the Langerhans cells come from the same linage of 
lymphocytes CD8+10. Mature dendritic cells induce T helper 1 
(Th1) response and immature dendritic cells inhibit the proli-
feration of Th1 and induce T CD4+ regulatory cells (Treg) and 
the IL-10 production156.

Treg cells stimulate the CTLA-4 production, which 
negatively regulate T citotoxic cells. Interferon-gamma, IL4 e 
IL12102 are required to induce CD4+ lymphocytes and Th res-
ponse, possibly by combined innate and acquired immunological 
mechanisms208,98. The IL18 cytokine has a similar action to the 
IL12 cytokine and stimulate Th1 response; however, it could also 
stimulate the tolerance response of the Th2 type, becoming an 
example that the immunological protection is heterogeneous 
and complicated218.

The fundamental question in the ontogenesis of diverse 
lineages of dendritic cells is if they are cells originally autono-
mous or hold common cellular background and differentiate 
according to the functional environmental inputs248. Studies 
with rats165,41, with mice297 and humans51 support the existence 
of diverse lineages of dendritic cells.

Dendritic cells may come from myeloid cells98, plas-
mocytoid cells135,13, monocytes339, macrophages269,187,34 or ger-
minative blood cells269,302. Some specific dendritic cells lineages 
hold better functional plasticity than others184,82,289,348 and such 
plasticity is exemplified by the differentiation in interdigital 
cells341. Furthermore, such plasticity facilitates its collaboration 
in the orquestration of the immunological response161, presen-
ting antigens to the T cells in a Th1 response type or inducing 
the host tolerance to the antigen in a Th2 response type194,289.

Myeloid dendritic cells phagocytose quickly and efficien-
tly fungus in the yeast and hyphae forms98. Functionally, myeloid 
dendritic cells tend to polarize to Th1 response and are called 
e dendritic cells 1 (DC1). Plasmocytoid dendritic cells tend 
to polarize to Th2 response tolerance response, and are called 
dendritic cells 2 - DC2265. Other authors show that dendritic 
cells 1 may also provide Th2 responses247,157, depending upon the 
type of the endotoxin or lypopolysaccharide as antigen and of 
the cytokines involved, being they type Th1 or Th2265,98,247,218,192.

The acquired immunological response is triggered by 
the recognition of pathogens and activation of cascade events 
for specific inflammatory start, evolving in special toll-like 
receptors - TLR180, considered the link between the innate and 
acquired immunological systems177. TLR receptors are able to 
induce the maturation of dendritic cells and address Th1 cells 
responses318,322,167,219; and, among such cells, the Th17 cells6.
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MHC class II molecules of the dendritic cells, in the 
presence of IL18 and IL12 cytokines, induce T CD4+ cells to 
Th1 acquired immunological response22,291. In the absence of 
IL12 cytokine, the antigen presentation might induce the Th2 
tolerance response218.

The dendritic cells are helped by T CD4+ helper in 
order to present antigens to the cytotoxic CD8+ lymphocytes. 
Such help is mediated by CD40 and CD40L molecules, in the 
surface of T CD4+ helper lymphocytes. The CD40 and CD40L 
molecules may also be linked to other antigen-presenting cells, 
as macrophages and B lymphocytes279.

It is important to highlight that dendritic cells do not 
need to interact with T lymphocytes to mature79. However, naive 
Th1 cells, when stimulated by DC1, present good proliferative 
potential and good cytolitic power, performing important role 
in the acquired immunological response. Such cells produce 
good amount of interferon-gamma, IL217,291 and IL1298,291. In 
opposite, the naive Th2 cells, when stimulated by DC2 cells, 
present poor proliferative potential and poor cytolitic power, 
i.e., a poor acquired immunological response. They produce 
good amount of IL10, TGF-beta and lower amount of interferon-
-gamma, do not producing IL4 or IL5. They are regulatory cells 
which play the immunological tolerance, expressing the role of 
the DC2 cells121,291.

DENDRITIC CELLS AND HIV VIRUS

The HIV virus infects and replicates in dendritic cells42; 
however, these cells maintain their capability to present anti-
gens to T CD4+ cells, although such capability is depressed38. 
Furthermore, the dendritic cells function as a vector of HIV 
virus infection proliferation119,118,245,244,61,81,319 even though they 
are more important as antigen-presenting cells than vectors of 
infection proliferation144.

The infection of dendritic cells in oral mucosa of HIV+ 
patients might contribute to its weakness or death,61 reducing 
its number234. Such process also occurs in the spleen203 and in 
the blood191,127,92,230,25.

HIV virus may also subvert the immunological system to 
escape its surveillance, targeting specifically C-lectin DC-SIGN 
receptors (DC-specific intercellular adhesion molecule-grabbing 
nonintegrin) of the dendritic cells322, though interference in 
their intracellular signilling or their maturation inhibition and 
cytokines production decrease, necessary to trigger the acquired 
immunological response.

The dendritic cells infected by HIV virus present defect 
in the MHC class II molecules (as macrophages infected y HIV 
virus as well), that may change its ability to present antigen to 
CD4+ cells242.

LYMPHOCYTES

The oral mucosa, as the skin, does not have B lympho-
cytes, but only T lymphocytes, grouped in small niches random 
distributed in both sides of the basal membrane and rarely in 
a superficial position323. The oral epithelium presents approxi-
mately 37 times more T lymphocytes than the skin epithelium323 
and the rate of lymphocytes CD4+/lymphocytes CD8+ in the 
oral mucosa is 1:2; in the skin is 1:4323, indicating that in the 
oral mucosa there is significantly more differentiation of CD4+ 
cells than in the skin.

The vast majority of these lymphocytes express the 
memory phenotype CD45RO+63. The lymphocytes of the oral 
epithelium are not activated (CD25-), differently than the CD25+ 
lymphocytes of the adjacent connective tissue63. The conversion 
from naive CD45A+ lymphocytes to memory CD45RO+ lym-
phocytes requires antigenic stimulation, suggesting that intra-
epithelium apoptotic CD25-/CD45+ lymphocytes degenerate 
if the antigen-presentating process does not occur63. CD4+ cells 
when activated differentiate in some lineages of T helper cells93.

The role of CD4+ cells in the oral mucosa against Candida 
albicans is fundamental, although the importance of their prod-
ucts IL2 and interferon-gamma has not been confirmed47,106,105. 
Other cytokines involved in such primary immunological 
response are IL-6 e TNF (tumor necrosis factor)-alpha107. It is 
also possible that to occur direct antimicrobial action of T lym-
phocytes against Candida and other microorganisms178.

Regulatory T cells (Treg) operate a fundamental role in 
the homeostasis of the immunological system202,30. Basically, they 
control the balance between the activation and the suppression of 
the immunological responses, although, with such control, they 
limit the antipathogenic action of the host210,32,342,33. The func-
tion of the Tregs is controlled by cytokines, antigen-presenting 
cells or directly, thru TLRs (toll-like receptors) by pathogens304 
or dendritic cells31 and its migration from the inflammatory site 
to the lymphoid site347. Immunoregulatory cytokines as IL10 e 
TGFβ, produced by innate immunological cells in response to the 
molecules derived from the pathogens, can be also produced by 
Tregs30. The reduced number of Tregs in HIV+ patients suggests 
that such cells are lost with the HIV infection as the T conventional 
cells as well. However, Tregs can be preserved in lymphoid sites, 
and do not be infected by HIV virus, providing a partial regulatory 
immunological control in such different scenario8,224.

T LYMPHOCYTES AND HIV VIRUS

The Th1 type acquired immunological response pro-
vided by CD4+ is considered the premium defence of the HIV+ 
patient against oral and vulvovaginal candidiasis, although the 
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immunological armamentarium against such fungical infection 
are complex and not totally clarified174. The number of CD4+ 
lymphocytes is certainly reduced in the oral mucosa of HIV+ 
patients who present candidiasis268,112, what is also confirmed 
in their periodontal tissues293,227.

As alternative defence system, the epithelium of the 
oral mucosa induces response of the T CD8+ cytotoxic lym-
phocytes147, independently of the situation of the CD4+ lym-
phocytes85. Such CD8+ cells, important actors in the resistance 
of the oral mucosa to infections58, are attracted to the oral 
epithelium182 by cytokines IL1, IL6, IL8, TNF-alpha and TGF-
beta, produced by oral keratinocytes of the oral epithelium323,188.

The CD8+ cells when activated by IL12 cytokine may 
inhibit the Candida albicans hyphae35; however, it is not com-
monly near to the fungical hyphae because the hyphae are usually 
superficially located in the oral epithelium260,104. The apoptosis 
of the CD8+ cells in HIV+ patients is, in general, mediated by 
macrophages, although CD8+ cells might be recruited by the 
oral mucosa in response to candidiasis, especially when the CD4+ 
cell number is low268,217.

T lymphocytes specific for Candida albicans, developed 
by the antigenic stimulation and IL12 are eliminated in HIV+ 
patients, independently of its affinity degree169. Furthermore, 
in HIV+ patients specific T lymphocytes for Candida albicans 
produce low amount of interferon-gamma, and possibly inuce, 
by negative feedback, a Th2 tolerance response331. Then, the 
HIV viral infection is associated to T regulatory cells (Tres) 
and decrease of the primary immunological response. It occurs 
decrease of the naive cells (CD45RO-) and of the memory cells 
(CD45RO+), both direct mediators of the acquired immuno-
logical response311.

In response to oral candidiasis in HIV+ patients, Th17 
and IL17 cytokine are essential, offering innate and acquired im-
munological response throughout neutrophils and anti-microbial 
factors65. T helper responses may occur throughout 03 cellular 
types: Th1, Th2 or Th1736,168. Th17 cells come from CD4+ cells, 
and different of Th1, Th2 and Tregs cells301 e produce the IL17 
cytokine. They have become the focus of the applied Immunol-
ogy, because they present special functions93. The role of the 
Th17 cells has been extensively studied in vitro; however, few 
details are known about its proprieties and its role in human 
immunological response37.

In humans, Th17 cells hold distinct migratory qualities 
and antigenic specificity4. In the specific case of candidiasis, the 
action of Th17 cells and the cytokine IL17 have been presented of 
crucial importance190. In the other hand, the fungical pathogenic 
process also holds an important role in the cellular polarization. 
Fungical hyphae promote the differentiation of Th17 cells and 
the cells Th23/cytokine IL23; however, fungical yeasts promote 
the differentiation of Th1 cells ant the IL12 cytokine4. The role 

of TGFβ in modulating the activation of Th17 cells is critical. 
Cytokines IL23, IL1 and IL6 are also involved in the antifungical 
defence; although their participation is not completely clear329.

In such defence, the pathogens are recognized by PRRs 
(pattern recognition receptors), which trigger the beginning of 
the immunological response to the infection267. The most studied 
way for fungus is the receptor Dectin-1, thru Syk kinase (spleen 
tyrosine kinase), CARD9 e Raf-1134, being critical in the induction 
of the Th17 cells267. The receptor Dectin-1 is C-type lectin and is 
present in the NK (natural killers) cells, promoters of the innate 
response45,262. In the same way, Dectin-2, throughout Syk kinase e 
CARD9, contributes for the activation of the dendritic cells and 
the regulation of the acquired antifungical immunological173,267.

CONCLUSIONS

Oral lesions, in special the oropharyngeal opportunistic 
fungical infection by Candida albicans, have been part of the cli-
nical evaluation of HIV+ patients and have stimulated extensive 
research. In such circumstances, the incidence of oral candidiasis 
must consider many different factors, about the fungus and 
about the host patient.

Currently, the main discussion in the specialized litera-
ture involves the modulation of the immunological defence in 
immunodepressed HIV+ patients under antiretroviral coverage. 
However, many aspects of the possible vulnerability of the oral 
mucosa and the circumstances of its breakage and the fungical 
colonization and invasion are not clear enough. The interaction 
between the host and the commensal fungus Candida albicans in 
HIV+ patients must be further explored.
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