The role of pleomorphic adenoma stroma on its neoplastic progression

state of art

Authors

  • Flávia Godinho Costa Wanderley Rocha Federal University of Bahia
  • Roberto Paulo Correia de Araújo Federal University of Bahia
  • Gabriela Botelho Martins Federal University of Bahia
  • Alena Ribeiro Alves Peixoto Medrado Federal University of Bahia https://orcid.org/0000-0003-4074-4680

DOI:

https://doi.org/10.5935/2525-5711.20180010

Keywords:

Extracellular Matrix, Neoplasm, Pleomorphic Adenoma

Abstract

The tumor development is linked to its stroma. The study of tumor stromal cells enables the understanding of the neoplastic progression. The present narrative literature review aimed to describe tumor stromal cells, such as endothelial and inflammatory cells, that may induce the neoplastic progression of pleomorphic adenomas. The Latin American and Caribbean Center on Health Sciences Information (BIREME) and PubMed electronic databases were searched for scientific articles on this subject published in Portuguese and English from 2007 to 2017. The search focused on information about the clinical, imaging, and anatomopathological characteristics of pleomorphic adenomas and its neoplastic progression. After analyzing abstracts and reading the cataloged manuscripts, 44 articles were selected. It was shown that the tumor stroma is important for neoplastic progression by providing elastic properties to the tumor and by enabling its nutrition. Thus, it is relevant to study the cellular and molecular mechanisms that occur in extracellular matrix in order to understand the biological behavior of pleomorphic adenoma.

Author Biographies

Flávia Godinho Costa Wanderley Rocha, Federal University of Bahia

MSc. student, Graduate Program in Organs and Systems Interactive Processes

Roberto Paulo Correia de Araújo, Federal University of Bahia

Professor of Biochemistry, Program in Organs and Systems Interactive Processes

Gabriela Botelho Martins, Federal University of Bahia

PhD in Stomatology, Adjunct Teacher, Program in Organs and Systems Interactive Processes

Alena Ribeiro Alves Peixoto Medrado, Federal University of Bahia

PhD in Human Pathology, Adjunct Teacher, Biointeraction Department

References

Eveson JW, Cawson RA. Salivary gland tumours. A review of 2410 cases with particular reference to histological types, site, age and sex distribution. J Pathol. 1985;146:51-8.

de Oliveira FA, Duarte EC, Taveira CT, Máximo AA, de Aquino EC, Alencar Rde C, et al. Salivary gland tumor: a review of 599 cases in a Brazilian population. Head Neck Pathol. 2009;3:271-5.

Nader ME, Bell D, Sturgis EM, Ginsberg LE, Gidley PW. Facial Nerve Paralysis due to a Pleomorphic Adenoma with the Imaging Characteristics of a Facial Nerve Schwannoma. J Neurol Surg Rep. 2014;75:e84-8.

Liu Y, Li J, Tan YR, Xiong P, Zhong LP. Accuracy of diagnosis of salivary gland tumors with the use of ultrasonography, computed tomography, and magnetic resonance imaging: a meta-analysis. Oral Surg Oral Med Oral Pathol Oral Radiol.2015;119:238-45.

Haldar S, Sinnott JD, Tekeli KM, Turner SS, Howlett DC. Biopsy of parotid masses: Review of current techniques. World J Radiol. 2016;8:501-5.

El-Naggar AK, Callender D, Coombes MM, Hurr K, Luna MA, Batsakis JG. Molecular genetic alterations in carcinoma ex-pleomorphic adenoma: a putative progression model? Genes Chromosomes Cancer. 2000;27:162-8.

Araya J, Martinez R, Niklander S, Marshall M, Esguep A. Incidence and prevalence of salivary gland tumours in Valparaiso, Chile. Med Oral Patol Oral Cir Bucal. 2015;20:e532-9.

Mariano FV, Noronha AL, Gondak RO, Altemani AM, de Almeida OP, Kowalski LP. Carcinoma ex pleomorphic adenoma in a Brazilian population: clinico-pathological analysis of 38 cases. Int J Oral Maxillofac Surg. 2013;42:685-92.

Chitturi RT, Veeravarmal V, Nirmal RM, Reddy BV. Myoepithelial cells (MEC) of the salivary glands in health and tumours. J Clin Diagn Res. 2015;9:ZE14-8.

Shah AA, Mulla AF, Mayank M. Pathophysiology of myoepithelial cells in salivary glands. J Oral Maxillofac Pathol. 2016;20:480-90.

Bielenberg DR, Zetter BR. The Contribution of Angiogenesis to the Process of Metastasis. Cancer J. 2015;21:267-73.

Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl). 2015;3:83-92.

Weinstein AM, Storkus WJ. Therapeutic Lymphoid Organogenesis in the Tumor Microenvironment. Adv Cancer Res. 2015;128:197-233.

Mouw JK, Ou G, Weaver VM. Extracellular matrix assembly: a multiscale deconstruction. Nat Rev Mol Cell Biol. 2014;15:771-85.

Han W, Chen S, Yuan W, Fan Q, Tian J, Wang X, et al. Oriented collagen fibers direct tumor cell intravasation. Proc Natl Acad Sci U S A. 2016;113:11208-13.

Hoying JB, Utzinger U, Weiss JA. Formation of microvascular networks: role of stromal interactions directing angiogenic growth. Microcirculation. 2014;21:278-89.

Schwarz RI. Collagen I and the fibroblast: high protein expression requires a new paradigm of post-transcriptional, feedback regulation. Biochem Biophys Rep. 2015;3:38-44.

de-Assis EM, Pimenta LG, Costa-e-Silva E, Souza PE, Horta MC. Stromal myofibroblasts in oral leukoplakia and oral squamous cell carcinoma. Med Oral Patol Oral Cir Bucal. 2012;17:e733-8.

Whatcott CJ, Diep CH, Jiang P, Watanabe A, LoBello J, Sima C, et al. Desmoplasia in Primary Tumors and Metastatic Lesions of Pancreatic Cancer. Clin Cancer Res. 2015;21:3561-8.

Miles FL, Sikes RA. Insidious changes in stromal matrix fuel cancer progression. Mol Cancer Res. 2014;12:297-312.

Tang J, Zhang Y, Zhang MB, Li YM, Fei X, Song ZG. Tissue elasticity displayed by elastography and its correlation with the characteristics of collagen type I and type III in prostatic stroma. Asian J Androl. 2014;16:305-8.

Liu L, Liu L, Yao HH, Zhu ZQ, Ning ZL, Huang Q. Stromal myofibroblasts are associated with poor prognosis in solid cancers: a meta-analysis of published studies. PLoS One. 2016;11:e0159947.

Adjei IM, Blanka S. Modulation of the tumor microenvironment for cancer treatment: a biomaterials approach. J Funct Biomater. 2015;6:81-103.

Li M, Luan F, Zhao Y, Hao H, Zhou Y, Han W, et al. Epithelial-mesenchymal transition: An emerging target in tissue fibrosis. Exp Biol Med (Maywood). 2016;241:1-3.

Betz C, Lenard A, Belting HG, Affolter M. Cell behaviors and dynamics during angiogenesis. Development. 2016;143:2249-60.

Rey S, Semenza GL. Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovasc Res. 2010;86:236-42.

Swelam W, Ida-Yonemochi H, Maruyama S, Ohshiro K, Cheng J, Saku T. Vascular endothelial growth factor in salivary pleomorphic adenomas: one of the reasons for their poorly vascularized stroma. Virchows Arch. 2005;446:653-62.

Hosaka K, Yang Y, Seki T, Fischer C, Dubey O, Fredlund E, et al. Pericyte-fibroblast transition promotes tumor growth and metastasis. Proc Natl Acad Sci U S A. 2016;113:E5618-27.

Stapor PC, Sweat RS, Dashti DC, Betancourt AM, Murfee WL. Pericyte dynamics during angiogenesis: new insights from new identities. J Vasc Res. 2014;51:163-74.

Khan MA, Assiri AM, Broering DC. Complement and macrophage crosstalk during process of angiogenesis in tumor progression. J Biomed Sci. 2015;22:58.

Yang L, Zhang Y. Tumor-associated macrophages: from basic research to clinical application. J Hematol Oncol. 2017;10:58.

Thanee M, Loilome W, Techasen A, Namwat N, Boonmars T, Pairojkul C, et al. Quantitative changes in tumor-associated M2 macrophages characterize cholangiocarcinoma and their association with metastasis. Asian Pac J Cancer Prev. 2015;16:3043-50.

Mitelman F, Johansson B, Mertens F. The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer.2007;7:233-45.

Elledge R. Current concepts in research related to oncogenes implicated in salivary gland tumourigenesis: a review of the literature. Oral Dis. 2009;15:249-54.

Voz ML, Aström AK, Kas K, Mark J, Stenman G, Van de Ven WJ. The recurrent translocation t(5;8)(p13;q12) in pleomorphic adenomas results in upregulation of PLAG1 gene expression under control of the LIFR promoter. Oncogene. 1998;16:1409-16.

Asp J, Persson F, Kost-Alimova M, Stenman G. CHCHD7-PLAG1 and TCEA1-PLAG1 gene fusions resulting from cryptic, intrachromosomal 8q rearrangements in pleomorphic salivary gland adenomas. Genes Chromosomes Cancer. 2006;45:820-8.

Kandasamy J, Smith A, Diaz S, Rose B, O'Brien C. Heterogeneity of PLAG1 gene rearrangements in pleomorphic adenoma. Cancer Genet Cytogenet. 2007;177:1-5.

Forment JV, Kaidi A, Jackson SP. Chromothripsis and cancer: causes and consequences of chromosome shattering. Nat Rev Cancer. 2012;12:663-70.

Deguchi H, Hamano H, Hayashi Y. c-myc, ras p21 and p53 expression in pleomorphic adenoma and its malignant form of the human salivary glands. Acta Pathol Jpn. 1993;43:413-22.

Felix A, Rosa-Santos J, Mendonça ME, Torrinha F, Soares J. Intracapsular carcinoma ex pleomorphic adenoma. Report of a case with unusual metastatic behaviour. Oral Oncol. 2002;38:107-10.

Downloads

Published

2018-01-20

How to Cite

1.
Rocha FGCW, Araújo RPC de, Martins GB, Medrado ARAP. The role of pleomorphic adenoma stroma on its neoplastic progression: state of art. J Oral Diagn [Internet]. 2018 Jan. 20 [cited 2024 Sep. 19];3:1-6. Available from: https://jordi.com.br/revista/article/view/168

Issue

Section

Review Article